複合型うず巻形ガスケットの 寿命評価技術

日本バルカー工業株式会社基幹産業開発部野々垣登CTO付朝比奈

The work presented in this report is the presumption method for product-life of an expansion graphite seal product which is used at the high temperature. The oxidation disappearance of expansion graphite was used as a parameter of product-life evaluation. Concretely, the seal degradation by atmospheric oxygen on a composition model spiral wound gasket was studied.

The reaction rate that was calculated by applying Arrhenius-equation to oxidation reaction of expansion graphite and the quantity of survival of expansion graphite of a seal limit were estimated the product-life of the expansion graphite seal product.

Furthermore, a deterioration model was suggested by section analysis of an examination sample. This deterioration model is expected for development of a seal product at high temperature.

In addition, a relationship between the gasket width and the seal-ability, internal pressure and the seal-ability were confirmed by the experiment. And it has been understood that the equation of viscosity laminar flow will be applicable in conversion of leakage. As a result, an application domain of the proposed method of the evaluation at product-life has extended.

Analysis about a stress change with expansion graphite disappearance and consideration of a stress change are future issue in spiral wound gaskets.

Winter 2008

バ

ルカー技術誌

1.はじめに

石綿の有害性は、従来から指摘されてきていたが、 近年、石綿による健康被害の深刻さがより注目され、 現在は原則全面使用禁止となっている。ただし、化学 プラントや鉄鋼プラントなどの既存設備に使用される 一部のシール製品については、ポジティブリスト化さ れ、当分の間適用を猶予されている¹。

シール製品には、あらゆる産業のさまざまな流体、 温度、圧力に対して長期間にわたりシールすることが 要求されるが、ユーザーにとって、シール製品のノン アスベスト化を阻害する最大の要因は、ノンアスベス ト製品の長期信頼性を予測できないことである。従来、 石綿シール製品が、長年にわたる使用実績から長期信 頼性を勝ち得ていたのに対して、ノンアスベスト製品 の実績は乏しく、長期間使用の安全性に対する信頼を 得るには、ユーザー個々の使用条件における実証試験 とともに、長期性能を理論的に評価推定する技術が必要 であると考えられる。

これまで、シール製品の長期性能を評価推定した事 例としては、原子力用途の金属製シールにおいて、そ の応力緩和特性から寿命推定した例²⁾³⁰や、うず巻形ガ スケットにおいて、熱重量変化からやはり応力緩和を 導いて寿命推定した例⁴⁰などがあるが、いずれも応力 緩和特性からの取り組みであり、材料劣化をシール機 能と結びつけた取り組みは見られていない。また、 ASME QMEではゴムホースの性能劣化をアレニウス 式で整理⁵⁰しているがシール製品への適用はできていな い。

ノンアスベスト製品に使用される材料は、ゴム、樹 脂、膨張黒鉛など様々であるので、それぞれの材料の 長期劣化予測やそれに伴うシール機能低下機構を明ら かにしていくことが、ノンアスベスト製品の長期性能 を推定する上で重要である。

本研究開発では、膨張黒鉛を主たるシール要素とす る複合型うず巻形ガスケット(図1)について、膨張黒 鉛の酸化消失反応から、高温でのシール寿命を導く手 法を開発対象とした。

内部流体は非酸化性流体と想定し、大気中の酸素に よるフランジ締結状態でのガスケット中の膨張黒鉛酸 化消失によるシール機能低下を推定した。

膨張黒鉛フィラー

図1 複合型うず巻形ガスケットの構成と使用状態

3-1) 膨張黒鉛の消失に関する反応速度論の適用

膨張黒鉛は、構成する炭素分子が大気中の酸素によっ て酸化され、一酸化炭素あるいは二酸化炭素となって 気化消失する(図2)。

この化学反応を速度論的に取り扱うことによって、 任意の温度における膨張黒鉛の消失減量速度を求める ことができ、所定の消失減量に達するために必要な時 間が求められる。膨張黒鉛と酸素との反応は、膨張黒 鉛が固体であるため、反応速度は、式(1)のように酸 素濃度と反応速度定数によって表される。

$V = \frac{dW}{dt} = -kC[O_2]$		\cdots (1)	
V	:反応速度		
W	:重量		
t	:時間		
k	:反応速度定数		
$C [O_2]$:酸素濃度		

反応速度には酸素濃度が影響するが、大気中の酸素 濃度が一定であり、また、内部流体に酸素が含まれる 場合にも酸素濃度は一定であるので、反応の律速過程 が大気中酸素の拡散であった場合には、定常状態にお いては見かけの反応速度は一定で、反応速度定数 k が 決まれば、膨張黒鉛の消失減量が算出できる。

反応速度定数kは、式(2)で表され、いくつかの温度 での反応速度定数を求め反応速度定数kと1/Tで整理す れば、活性化エネルギーを導くことができ、これによ り、反応の律速過程の推定や任意の温度における反応 速度定数を求めることができる。

$$k = Aexp\left(-\frac{Ea}{RT}\right) \qquad \cdots (2)$$

A :頻度因子

Ea:活性化エネルギー

- R :気体定数
- T : 絶対温度

3-2)シール限界となる膨張黒鉛消失減量

複合形うず巻形ガスケットは、金属帯であるフープ と膨張黒鉛フィラーやマイカなどの無機質フィラーを 重ねて巻き合わせ、金属リングで内径や外径を補強し たガスケットである。シールは主として、膨張黒鉛で 保持されており、膨張黒鉛が高温で酸化されると消失 し、シールが破壊されて漏洩が発生するため、膨張黒 鉛の酸化消失を抑制する目的で内径側あるいは外径側 にマイカなどの無機質フィラーを配している。

一般に、高圧流体シールの場合の漏洩量は、式(3)

NO.14

で表される。

$$Q = C \left(P i^2 - P o^2 \right)$$

 \cdots (3)

Q :漏洩量(漏洩速度)

- C :コンダクタンス
- Pi :内圧
- Po:外圧

Cはコンダクタンスで、漏洩パスの大きさによって 決まる。そのため、シール要素である膨張黒鉛の消失 によって、許容漏洩量を超える大きさの漏洩パスが形 成された時点でガスケットはシール寿命を迎える。

3-3)寿命推定手法

許容漏洩量以上の漏洩が発生する膨張黒鉛の消失量 (限界消失量)が求まれば、膨張黒鉛消失の反応速度定 数から算出される膨張黒鉛の消失速度によって、シー ル寿命を推定できると考えられる。すなわち、シール 限界の膨張黒鉛消失減量に達するまでの時間をシール 寿命と考えることができる。

4-1) 複合型うず巻形ガスケットにおける膨張黒鉛の 酸化消失機構

膨張黒鉛単体の大気中での酸化消失反応に関する活 性化エネルギーEsとフランジ締結状態でのガスケット 中の膨張黒鉛の消失反応に関する活性化エネルギーEf を比較することで、反応の律速過程を推定し、また、 フランジ締結状態での膨張黒鉛の酸化消失速度を求め た。酸化消失試験(熱減量試験)の試料および試験条 件を表1に示す。

一般名称マイカ入り複合型うず巻形ガスケット			
メーカー 日本バルカー工業			
品番	No.8592VH (内外周マイカ)		
サイズ	ϕ 26.9 $ imes$ ϕ 31.8 $ imes$ ϕ 63.2 $ imes$ t4.5mm		
温度	450 °C \ 500 °C \ 600 °C		
初期面圧	100 MPa		
加熱時内部流体	窒素ガス(大気圧封入)		
加熱方式	電気炉中加熱		

表1 複合型うず巻形ガスケット試料・試験条件

膨張黒鉛単体の重量経時変化およびフランジ締結状 態でのガスケット中膨張黒鉛消失減量の経時変化にア レニウス式を適用して(図3、図4)、それぞれ膨張黒

2n

-18.0

-20 0

0.0010

鉛単体、フランジ締結状態でのガスケット中膨張黒鉛 の活性化エネルギーを求めた(**表2**)。

表2 膨張黒鉛消失反応の活性化エネルギー

0.0016

	活性化エネルギー		
膨張黒鉛単体	Es	49.7 kcal/mol	
フランジ締結状態	Ef	10.4 kcal/mol	

0.0014

(1/K)

0.0012

1/T

図4 締結状態での活性化エネルギー

膨張黒鉛単体の活性化エネルギーは、49.7kcal/mol であり、この値は、Fullerらによって導かれた膨張黒 鉛の活性化エネルギー44.2 kcal/mol[®]やZaghibらによ る44.9±0.5 kcal/mol[®]ともほぼ整合が見られた。

一方、フランジ締結状態での膨張黒鉛消失の活性化 エネルギーは、10.4 kcal/molであった。通常、拡散の 活性化エネルギーは、反応の活性化エネルギーより小 さく、2.9-9.6 kcal/mol程度⁸⁰とされることから、フラ ンジ締結状態での膨張黒鉛の消失は、拡散律速が支配 的であることがわかり、マイカフィラーによる酸素遮 蔽の効果がみとめられた。

フランジ締結状態での膨張黒鉛の反応速度は、3項で 述べた通り、膨張黒鉛減量線の傾きから求められ、こ の温度領域での任意温度での反応速度定数は図4の活性 化エネルギーを用いて求めることができる。

次に、フランジ締結状態で膨張黒鉛の消失が進行し たガスケット断面を観察したところ(図5)、外径側1巻 NO.14

図5 約10% 減量を生じたガスケット断面 (外径側から大気侵入したケース)

き目の膨張黒鉛がほぼ消失しているのに対し、2巻き目 は、ほぼ健全であった。これより、複合型うず巻形ガ スケット中の膨張黒鉛の酸化消失は、ガスケットとフ ランジの界面に沿って進むのではなく、大気側から、 膨張黒鉛1巻きごとに進んでいることがわかった。

フランジ締結状態での膨張黒鉛の消失反応が拡散律 速支配であること、および図5の膨張黒鉛の消失形態か ら、複合型うず巻形ガスケットの膨張黒鉛酸化消失モ デルを図6のように提案した。すなわち、複合型うず巻 形ガスケットの膨張黒鉛フィラーは、マイカフィラー を浸透してきた酸素によって酸化され始めるが、その 進行は、フランジとの界面に沿って進むのではなく、 フープとの重ね巻きの一層ごとに進行していき、消失 速度は、マイカフィラーによる酸素遮蔽能力に影響を 受ける。

図6 複合型うず巻形ガスケットにおける膨張黒鉛の消失モデル

4-2) 複合型うず巻形ガスケットにおける膨張黒鉛の 酸化消失量とシール性能

膨張黒鉛酸化消失量と漏洩量の関係を求めるにあた り、膨張黒鉛の酸化消失を加速するため、外径側のマ イカ層を設けないうず巻形ガスケットを用いて、試験 を実施した。試料および試験条件を**表3**に示す。

	試料		
一般名称	マイカ入り複合型うず巻形ガスケット		
メーカー	日本バルカー工業		
品番 No.8592VH(内周のみマイカ)			
サイズ	ϕ 26.9 $ imes$ ϕ 31.8 $ imes$ ϕ 63.2 $ imes$ t4.5mm		
試験条件			
温度	600 °C		
初期面圧	100 MPa		
加熱時内部流体	窒素ガス(大気圧封入)		
漏洩測定時流体 窒素ガス(0.1、0.5、1.5 MPa)			
加熱方式	電気炉中加熱		

図7 膨張黒鉛減量と漏洩量の関係

図7にガスケット中の膨張黒鉛の減量率と漏洩量の関係を示す。使用者が設定する許容漏洩量から複合型う ず巻形ガスケットで許容される膨張黒鉛の減量限界が、 このデータから求められる。図7中の破線は、許容漏洩 量が4×10³ Pa·m³/sとした場合の減量率67%を求める 例を示す。

ガスケット幅と漏洩量の関係は、図8に示したように、 漏洩量 $\infty \ell n$ (外径/内径)の関係として、シール内圧 と漏洩量の関係は、図9に示したように、漏洩量 ∞ Pi²-Po²の関係としてそれぞれ導かれる。これらは、式 (4)に示す粘性層流の式が成り立つことを示しており、 ガスケットサイズが異なる場合や使用圧力が異なる場 合に、式(4)を用いて許容漏洩量を換算することがで きることがわかる。

$$Q = \frac{\pi \varepsilon^{3}}{12 \mu \ell n (r_{o}/r_{i})} (Po^{2} - Pi^{2}) \cdots (4)$$

$$\mu : 粘性係数$$
ro:シール外径
ri:シール内径
 $\varepsilon : リークパスの隙間$

4-3) 複合型うず巻形ガスケットにおける寿命推定

複合型うず巻形ガスケットにおいて提案する寿命推 定手順を、内圧0.1 MPaの場合の寿命推定の例を交えて 以下に示す。

NO.14

①許容漏洩量を確認する。

通常、許容漏洩量は、使用者が使用条件に応じて決 定するが、ここでは例として、石綿うず巻形ガスケッ トのシール性能データから、内圧が0.1 MPaの場合の漏 洩量を許容漏洩量として算出する。

図10は、従来使用されてきた、石綿うず巻き形ガス ケットのシール性能である。このシールデータに、漏 洩換算の式(4)を適用すると、各内圧での漏洩量は、 **表4**に示す値となり、内圧0.1 MPaの場合には、許容漏 洩量は、4.7×10³ Pa·m³/sとなった。

図10 石綿うず巻形ガスケットの熱サイクルシール性能

②膨張黒鉛限界減量率を確認する。

図7より、ガスケットの漏洩量が、許容漏洩量に達す

内圧(MPa)		漏洩量(Pa•m³/s)	備考
	1.5	4.0×10^{-1}	実測
	1.0	1.9×10^{-1}	計算值
	0.5	5.5×10^{-2}	計算值
	0.1	4.7×10^{-3}	計算值

る膨張黒鉛の限界減量率を求める。漏洩量が、①で求 めた4.7×10³ Pa·m³/sになる膨張黒鉛減量率は、約67% である。

③寿命を推定する。

図4から対象温度での膨張黒鉛消失の速度定数を求め、膨張黒鉛消失速度を算出する。さらに消失速度から、限界減量率となる時間を導出する。

例の場合は、**表5**に示したように、600℃では4.5ヶ月、 450℃で約16ヶ月といった結果が得られた。

表5 シール寿命推定例

旧由	Ŷ	600	500	450
/ / / / / / / / / / / / / / / / / / /		600	500	450
推定寿命	month	4.5	9.8	15.7
	day	136	294	470
	hour	3,260	7,066	11,272

以上のように、膨張黒鉛の酸化消失反応に基づいた 複合型うず巻形ガスケットのシール寿命推定手法を提 案することができた。本手法を用いて、例として求め られた値は、特定の使用条件での推定値であり、使用 条件によりその寿命は変わってくるが、今回の結果は、 実際の実績と大きな違いはないと思われる。

一方、内部流体に大気成分が混入する場合には、大 気中酸素による膨張黒鉛の酸化消失に加えて、内部流 体に混入した大気中の酸素によっても、膨張黒鉛の消 失が進む。その際の消失速度は、大気の混入率が内部 流体の酸素分圧を決めるので、内部流体への大気の混 入比率によって消失速度が変わり、(4)式から酸素の 拡散速度(漏洩量)が、圧力の2乗に比例することから、 (5)式で表される。すなわち、内部流体への大気混入 の比率が大きくない場合は、大気による酸化消失が支 配的である。

$$V = V_0 \times (1 + X^2) \qquad \cdots (5)$$

V :消失速度

Vo:非酸化性流体の場合の消失速度

X : 内部流体への大気混入比率

このような考察を基に、内部流体に大気が混入する 場合についても、(5)式を用いて、補正考慮ができる と考えられる。

今回の取り組みは、膨張黒鉛の劣化に注目して、シー ル機能の寿命推定を試みたものである。膨張黒鉛を主 なシール要素とする複合型うず巻形ガスケットにおい て、膨張黒鉛の酸化消失を速度論的に取り扱うことで、 そのシール寿命を推定する手法を提案した。

しかしながら、本取り組みで対象とした複合型うず 巻形ガスケットは、膨張黒鉛が主たる強度要素でなく、 シール要素であるために本手法の適用が可能であった のに対し、膨張黒鉛自身が強度要素である場合には、 膨張黒鉛の酸化消失に伴い、応力状況が大きく変動す るため、むしろ、膨張黒鉛の消失に伴う応力変動がシー ル劣化の主要因となると考えられる。

今回、対象とした複合型うず巻形ガスケットにおい ては、応力変動がシール劣化の主要因にはなっていな いが、より精度の高い寿命推定を行っていくためには、 本研究開発の成果のうえに、膨張黒鉛消失に伴う応力 変動の解析を実施していくことが有効で、より信頼性 の高い寿命評価技術の確立へと結びついていくと考え られる。

さらに、ノンアスベスト製品においては、今回対象 とした膨張黒鉛系のシール製品以外にも、ゴム材料と 無機材料の複合体であるノンアスジョイントシート[®]が 多く使われており、100℃を超える温度域での健全性や 長期信頼性が明確にすべき技術課題といえる。これに ついては、本手法の基本的な考え方を応用して、ゴム 材料の劣化機構の解明から劣化速度の導出とシール限 界となる劣化状況の定義と適切なパラメーターの設定 といった課題を乗り越える取り組みが必要と考えられ る。

これらノンアスベスト製品の長期性能評価技術をさ らに進化させることにより、長期信頼性を尺度とした 新たな製品開発が期待される。

従来から使用されてきた石綿シール製品は、使用し ている各ユーザーでの長年の実績により信頼を得てき たが、ノンアスベストシール製品においては、使用実 績が乏しいことが、ノンアスベストシール製品導入の 阻害要因となっていると考えられる。

阻害要因を排除していくには、ユーザーでの実機評

価により個々の使用条件での使用実績を積み上げてい くことも重要であるが、同時に、ノンアスベストシー ル製品の劣化機構を解明し、長期的な性能予測の精度 を上げていくことが必要であると考えられる。

本研究開発では、膨張黒鉛に絞って検討を行ったが、 ノンアスベストシール製品は、他にゴム、樹脂、有機 繊維、など多くの材料が使用されており、これらの材 料についてもそれぞれの材料ごとに劣化機構を解明し、 同様の取り組みをしていくことが重要である。

これにより、ユーザーにとっては、自らの確証デー タに加え、長期信頼性についての根拠を得ることにな り、阻害要因が排除できるものと考えられる。

本稿は独立行政法人新エネルギー・産業技術総合開 発機構(NEDO)委託研究<緊急アスベスト削減実用 化基盤技術開発>の成果を要約したものであり、日本 工業出版社「配管技術」誌 第49巻第13号(通巻660号) に掲載された論文に加筆修正したものである。

参考文献

- 労働安全衛生法施行令の一部を改正する政令(平成 18年8月2日政令第257号)
- トライパックの長期性能評価、掘井、7-13 バルカー レビュー第35巻3号
- 3) 大断面径トライパックの長期性能評価、野々垣、1 5 バルカーテクノロジーニュースNo.6 (2003)
- Asahina M.,Nishida, T., Yamanaka,Y.,Gasket performance of SWG in ROTT and short term estimation at elevated temperature., ASME PVP, Vol.326, 47-59 (1996)
- 5) 原子力用非金属シールの環境劣化と寿命の予測、西 田隆仁、pp6-14 バルカーレビュー第44巻6号
- E.L. Fuller, J.M. Okoh Kinetics and mechanisms of the reaction of air with nuclear grade graphite:IG-110, J of nuclear materials 240 (1997) 241-250.
- K.Zaghib,X.Song,K.Kinoshita, Thermal analysis of oxidation of natural graphite: isothermal kinetic studies, Thermochimica Acta 371 (2001) 57-64.
- 8)応用物理化学Ⅲ反応速度 原納、鈴木、蒔田 培風 館

NO.14

7