Types and Application of Filler-added PTFE Materials

1. Introduction

Among plastic-based materials, PTFE offers diverse benefits including heat resistance, chemical resistance, insulation, non-stick, and low friction. Its scope of application is broad: it is used in various fields including semiconductor devices, chemical plants, automobiles, office equipment, and home appliances.

However, PTFE suffers from inadequate abrasion resistance and creep resistance, which are serious disadvantages leading to severe self-damage in the case where PTFE is used in sliding parts like shaft bearings and large deformation in the case where one is used in load-bearing parts. The addition of a different material, namely, filler, can alleviate these problems. This report described the types, features, and applications of typical fillers.

2. Features

2-1) Modifiable Features

The addition of filler can modify features including abrasion resistance, creep resistance, thermal conductivity, and coefficient of linear expansion. Modified PTFE has approximately 1000 times stronger abrasion resistance, twice the creep resistance, and up to twice the thermal conductivity of pure PTFE. The optimal filler should be selected depending on the desired modification.

2-2) Types of Filler

Typical fillers include inorganic fillers such as glass fiber, graphite, molybdenum disulfide, and bronze. Organic fillers are also used. The features of each filler-added PTFE are described below.

- Inorganic fillers
- Glass fiber

Glass fiber has little effect on chemical and electrical properties. Glass fiber-added PTFE has approximately twice the compression creep resistance and approximately 1000 times better abrasion resistance than pure PTFE. These features make glass fiber-added PTFE ideal for improving abrasion resistance. The color is white, which makes it easy to use. However, it might break a counterpart shaft when used for shaft bearings.

• Graphite

Graphite improves creep resistance and reduces initial wear and starting resistance of PTFE. Graphite-added PTFE has excellent thermal conductivity and chemical resistance. It is less abrasive to the counterpart material, so it is economically efficient, although its abrasion resistance is not excellent.

• Carbon fiber

Carbon fiber-added PTFE has excellent compressive

Table1 Types and features of fillers 3)

Filler type	Identifying symbol	Characteristics				
Glass fiber	15%…2K0	Excellent abrasion resistance				
	20%…2N0	Excellent electrical characteristics				
	25%…2T0	Attached by alkali				
		Poor abrasion resistance in water				
Glass fiber +	$20\% + 5\% \cdots$	Excellent creep resistance				
graphite	2N1	Improves sliding properties				
Glass fiber +	15%+5%…	Excellent creep resistance and compression strength				
MoS ₂	2K7	Improves sliding properties				
		Excellent electrical insulation				
Graphite	15%…1K0	Excellent sliding properties				
		Does not attach to soft opposite materials				
Bronze	60%…3M0	Excellent creep resistance and compression strength				
		Excellent heat conductivity				
Bronze + carbon fiber	3U8	Excellent sliding properties in oil				
Carbon graphite	25%…6T0	Excellent creep resistance and load				
	33%…6P0	bearing properties at high temperatures				
Carbon fiber	10%…8H0	Excellent sliding property in water				
		Excellent creep resistance				
Organic filler	9A1	Does not attach to soft opposite materials				
	9A2	Stable sliding properties				
	9B1	Excellent creep resistance and compression strength				

No.32

Item Unit	TT - 14	ASTM	Filler identifying symbol										
	Unit	measuring method	Pure PTFE	2K0	2N0	2T0	2N1	2K7	1K0	3M0	6T0	6P0	8H0
Filler content Amount %			Glass fiber	Glass fiber	Glass fiber	Glass fiber 20%	Glass fiber 15%	Graphite	Bronze	Carbon/	Carbon/	Carbon fiber	
			15%	20%	25%		MoS2 5%	15%	60%	graphite 25%	graphite 33%	10%	
Specific gravity		D792	2.1	2.23	2.24	2.26	2.23	2.29	2.17	3.91	2.10	2.05	2.09
Tension	MPa	D638	30.9	23	20.6	18.6	14.7	18.5	16.0	18.5	17.5	13.5	20.0
Stretch	%	D638	400	320	300	280	235	280	230	215	55	15	200
A court (MD			_	6,6	6.0	5.2	5.8	4.6	5.2	3.2	3.4	1.9	6.8
	24h {MD CD	D621	-	10.3	9.4	8.3	7.0	5.4	5.8	3.5	3.6	2.6	9.0
5 (MD			14.3	9.6	8.7	7.9	8.0	6.5	6.9	4.5	4.5	3.7	9.4
5 ^{24h} CD		/23°C \	16.7	14.3	13.1	12.4	9.8	7.8	8.0	4.9	4.9	3.7	13.2
2 Permanent (MD)	%	(13.7MPa)	7.9	5.3	4.9	4.5	3.9	3.0	3.3	2.0	2.0	1.7	5.1
deformation (after 24 hours) CD		(10.7 Miru)	8.4	7.6	7.5	7.5	5.2	4.0	4.5	2.3	2.3	1.8	7.1
E an i (MD		/150°C \	51.8	52.4	51.3	50.7	36.8	45.5	43.0	40.4	35.0	32.4	33.7
S 60min CD		(19.6MPa)	-	_	_	_			-		36.1	35.6	38.7
		(101010111 0 /										00.0	
0.2% offset CD Modulus of elasticity CD		D790	5.6	3.9	4.1	4.2	8.3	8.5	6.0	8.0	9.6	-	8.3
Modulus of elasticity CD			$340 \sim 620$	1.550	1.730	1,900	1,540	1.690	_	1,380	1,190	-	1.030
臺 0.2% (MD			7.6	1,550	1,730	13.1	10.0	12.9	10.2	1,300	1,1.50	_	8.7
0.2% (MD offset CD Modulus of (MD elasticity CD			-	8.9	8.9	8.9	10.0	12.5	10.2	12.2	8.4	_	9.6
Modulus of (MD	MPa	D695	410	690	760	830	980	970	-	770	1,050	-	770
elasticity CD			410	600	650	700	960	830	_	800	840	_	770
	Durometer "D"	D2240	55	60	62	63	64	65	61	70	67	68	64
Impact strength (izod)	I/m	D2240 D256	155	144	129	117	154	159	140	10.5	-		168
Heat conductivity	W/(m·K)	Cence Fitch	0.24	0.37	0.40	0.45	0.20	0.33	0.45	0.47	0.43	_	0.19
Linear expansion coefficient	W/ (III'K)	Cence Fitch	0.24	0.57	0.40	0.40	0.20	0.55	0.45	0.47	0.45		0.19
			_	14.2	13.4	12.6	13.5	15.0	12.6	9.7	8.5	_	13.4
$25 \sim 90^{\circ}C \begin{cases} MD \\ CD \end{cases}$	2		12.2	14.2	13.4 10.2	8.3	9.0	6.3	7.9	9.7 7.8	8.5 7.2	_	9.9
0.00			14.4									_	
25~150°C MD	(CD 10=5/°C			15.1	14.2	13.2	13.1	15.8	13.5	10.3	9.4		14.5
		D696	12.6	10.9	10.3	8.6	9.0	6.4	8.5	7.9	7.7	_	10.0
	(CD MD			16.3	15.4	14.4	13.9	17.3	14.6	11.4	10.6		15.7
			13.7	12.3	11.4	9.7	9.9	6.9	9.2	9.0	8.5	-	11.1
25~260°C MD			_	18.5	17.7	16.8	15.9	20.0	17.6	14.0	13.5	-	18.2
25~200 C 1CD	0/	DEEO	16.4	14.8	13.4	11.9	11.7	8.0	10.8	10.4	9.7	-	13.1
Water absorption rate	%	D570	0	0.015	0.014	0.013	0.016	0.010	0	0	_	-	-
Limit PV value													
0.1m/s	MPa · m/s		-	0.6	0.7	0.7	0.8	0.8	0.9	0.6	1.0	1.0	0.9
0.5m/s			-	0.7	0.9	0.9	1.4	1.5	1.4	1.0	1.4	1.5	1.5
5.0m/s			-	1.1	1.2	1.2	1.8	1.8	1.3	0.6	1.8	1.9	1.8
Coefficient of abrasion		Measuring with	7,100	5	7	7	7	6	9.8	13	8	13	6
(in air, after 50 hours)	$\frac{\text{cm} \cdot \text{s}}{\text{MPa} \cdot \text{m} \cdot \text{h}} \times 10^{-5}$	Matsubara-type	.,200			· ·					, , , , , , , , , , , , , , , , , , ,		, , , , , , , , , , , , , , , , , , ,
(in water, after 50 hours)	MPa·m·h test instrument		5,500	-	5,100	-	-	470	-	20	26	20	
Coefficient of dynamic friction		P=0.69MPa											
(after 50 hours)		V=0.5m/s	-	0.39~0.42	0.29~0.35	0.50~0.54	0.30~0.32	0.29~0.31	0.22~0.25	$0.12 \sim 0.17$	0.31~0.37	0.31~0.35	0.27~0.30
Coefficient of static friction			$0.05 \sim 0.08$	0.10~0.13	$0.10 \sim 0.13$	0.10~0.13	0.08~0.10	0.08~0.10	0.08~0.10	0.08~0.10	-	-	
(after 50 hours)			- 0.05~0.08		0.29~0.35 0.10~0.13	0.50~0.54 0.10~0.13	0.30~0.32 0.08~0.10	0.29~0.31 0.08~0.10	0.22~0.25 0.08~0.10	0.12~0.17 0.08~0.10	0.31~0.37	0.31~0.35	0.27~0.

Table2 List of filler-added PTFE properties 3)

strength, creep characteristics, and abrasion resistance. These features are significantly improved in the hightemperature region above 200°C. It also has excellent sliding characteristics and good chemical resistance in water. It offers excellent sliding characteristics in fluids of low lubricity including acid and alkaline fluids.

• Molybdenum disulfide

Molybdenum disulfide-added PTFE has improved creep resistance and lubrication. It does not degrade electrical insulation, so it can be used for electrical usages. However, molybdenum disulfide is rarely added to PTFE as a single filler; it is added along with glass fiber and bronze.

• Bronze

Bronze-added PTFE has significantly improved abrasion resistance, compressive strength, creep resistance, hardness, and dimensional stability. It tends to retain oil on sliding surfaces, and has excellent abrasion resistance under oil lubrication, so it can be used for oil lubrication usages. However, it is important to note that bronze-added PTFE is not suitable for electrical and chemical applications.

- \circ Organic fillers
- Polymide-based resin

Polymide based resin-added PTFE is beneficial in the case where soft metal moving parts that are likely to be damaged by carbon-added or graphite-added PTFE are used as a counterpart material.

• Polyphenylene sulfide-based resin

Polyphenylene sulfide-added PTFE has creep resistance and dimensional stability.

• Aromatic polyester-based resin

Aromatic polyester based resin-added PTFE has improved mechanical characteristics including compression and bending, as well as stable sliding.

Like these examples, there are many types of filler. An appropriate filler should be selected depending on the usage conditions including load, sliding speed, lifespan, frictional conditions, counterpart material, linear expansion, corrosion resistance, and electrical properties.

Although pure PTFE is white, some fillers turn PTFE black or dark brown. These conditions should be

No.32

considered depending on the position of use and the application.

3. Conclusion

PTFE has excellent chemical characteristics, sliding properties and non-stick, making it suitable for shaft bearings and sliding parts. In the case where filler is added to PTFE, the PTFE gains improved frictional and creep characteristics, making it suitable for mechanical purposes. The type of filler determines the improvement in characteristics of PTFE. We hope the above explanation of various fillers will help our readers when selecting a material.

4. Reference

- Takaharu Ikeda. VALQUA Review; Vol.35, No.1 (1991)
- 2) Takaomi Satokawa. Fluororesin Handbook
- $3) \\ VALQUA \ Handbook$

Youichiro Wada Corporate Research and Development Group Development Division High Performance Plastics Development Division

No.32