金属平形ガスケット付き管フランジ締結体の 基礎シール特性評価

1. はじめに

金属平形ガスケット及びリングジョイントガスケットなどの金 属ガスケットは石油精製、石油化学、発電プラントなどの高 温高圧条件下のフランジ締結体で広く使用されるが、しばし ば締結部から内部流体の漏れが生じることが問題となってい る。これは締結体の力学特性とボルト締付け法が十分解明 されていないためと推測される。ジョイントシートガスケット、 PTFEガスケット、うず巻形ガスケットなどのソフトガスケット、 PTFEガスケット、うず巻形ガスケットなどのソフトガスケット、 セミメタリックガスケット単体及び締結体に用いられた時の特 性についてはASME (アメリカ機械学会)、HPI (日本高圧力 技術協会)、大学やメーカーで多くの研究が行われている。 しかしながら、金属ガスケット付きフランジ締結体に関する研 究はほとんど行われておらず、その挙動は明確になっていな かった^{10, 2)}。

これまで、近藤らの研究によって金属平形ガスケット単体 のシール特性はガスケット表面に塑性変形が生じることによっ てシール性が大きく向上することが明らかになっている³⁾⁻⁷⁾。 Figurel (a)はクロムモリブデン鋼、銅、アルミニウムの金属 平形ガスケット応力の場合、材料のヤング率及び表面硬度の 低い順にシール性が優れていることが分かる。更に、各材料 の降伏応力に対する平均応力の割合で整理した場合、 Figurel (b)に示されるようにその値が1.0付近で急激に漏 れ量が小さくなっていることがわかる。このように、金属ガス ケットのシール性にはガスケット材料の降伏応力が大きく影響 していることが明らかにされている。しかしながら、これまでの 研究では評価装置の測定能力上、1×10⁻⁴ Pa・m³/sレベル でしか漏えい評価ができていない。

本研究では、金属ガスケットの基礎研究として、金属平形 ガスケット単体及び締結体に用いた時の微小漏えい特性 (1×10⁻⁷ Pa・m³/sレベル)を明らかにすることを目的としてい る。対象となる材料はアルミニウムと銅の2種類、それぞれ3 種類の幅寸法とし、剛プラテンを対象に実験と有限要素解 析によって評価する。加えて、ASME/ANSI class300 2inch フランジ締結体を用いた評価も行う。

2. 実験方法

Figure2は実験で用いたプラテン試験機を示す。万能圧 縮試験機(島津製作所製 AUTO GRAPH 500KND)、試 験体の金属平形ガスケットを挟み込むプラテン(SUS304 製)、ヘリウムガスボンベ、圧力計、漏れ量計測装置及び変 位計測機から構成される。漏れ量計測装置は、石けん膜流 量計とヘリウムリークディテクター (ULVAC製)を切り替えら れるようになっており、漏れ量がおよそ1×10⁻⁴ Pa·m³/s以下

ではヘリウムリークディテクターを適用する。ガスケットの材質 は、アルミニウム (A1050)と銅 (C1020)の2種類、径寸法は φ25×φ20、φ30×φ20、φ40×φ20、の3種類で厚みは全 て3mmである。所定の圧縮荷重を負荷した後にヘリウムガ ス内圧4MPaを負荷し、漏れ量及びガスケット圧縮量変位を 計測する。ガスケット圧縮及び復元の試験シーケンスは、ア ルミニウムではガスケット応力0→180→0MPa、銅ではガス ケット応力0→450→0MPaとして段階的に変化させる。

Figure2 プラテン試験装置概要

3. 有限要素解析方法

2項で述べた実験について有限要素解析を用いた評価も 行う。有限要素解析には汎用コードABAQUSを用いる。 Figure3は有限要素解析で用いた金属平形ガスケット付きプ ラテン試験装置の三次元モデルである。本来は軸対称モデ ルでも有効な評価は可能であるが、後述の締結体の場合と 同条件にするために三次元モデルとしている。ガスケットは弾 塑性要素、フランジは弾性要素でモデリングしている。所定 の圧縮力でプラテンを圧縮し、その際のガスケット応力及び 圧縮量、相当塑性ひずみを算出する。ここで、相当塑性ひ ずみ。は以下のように定義される。

Figure3 プラテン試験に対する有限要素解析モデル

4. 実験及び解析結果

Figure4はプラテン試験から得られたアルミニウム及び銅 の平形ガスケットの圧縮試験結果を示す。いずれの材料に おいても外径が小さいほど(幅が小さいほど)変形量が大きく なる結果となった。これは、ガスケット形状の影響によるものと 考える。

Figure5は径寸法φ20×φ40のアルミニウム平形ガスケット の試験後のガスケット及びプラテン表面の様子を示す。ガス ケット表面とフランジ表面の両方に内径側と外径側に変色が 見られる。これは、アルミニウムの微細な粉末が残っていたた めであり、圧縮によってガスケットがポアソン効果で内外径へ 変形し、フランジと擦れたことに起因すると考える。

Figure6はプラテン試験から得られた漏れ量と平均ガス ケット応力との関係を示す。ヘリウムリークディテクターを用い ることによって1×10⁻⁷ Pa・m³/sレベルまでの微小漏れ量測 定が可能となっている。アルミニウム及び銅のガスケットのい ずれの結果においても、高い平均ガスケット応力を負荷する ことで漏れ量は減少し、平均ガスケット応力を小さくすることに よって漏れ量は増加している。また、アルミニウムでは 120MPa程度、銅においては250MPa程度で漏れ量の減少 が緩やかになっている。

漏れ量と平均ガスケット応力の関係はガスケット幅が変わっ ても同様であることから、金属平形ガスケットのシール性は平 均ガスケット応力で整理できると言える。除荷過程において、 アルミニウムガスケットでは約30MPa、銅ガスケットでは約 50MPaで漏れ量が急激に増加している。これは、圧縮過程 で得られたフランジ面とガスケット面のなじみが失われたもの と考える。

Figure7はプラテン試験を再現した有限要素解析の結果 である。ガスケット材料はアルミニウム、寸法はφ20×φ25とし た場合のガスケット応力分布及び相当塑性ひずみ分布のコ ンター図を示している。平均ガスケット応力が100MPaから 120MPaに増加した際に相当塑性ひずみが急増していること がわかる。この時にガスケットが大きく塑性変形し、フランジ面 の微小な凹凸を大きく埋め、シール性が向上していると考え る。このことから、メタルガスケットが高いシール性を発揮する にはガスケット表面の塑性ひずみが必要と言える。

Figure4 金属平形ガスケットの圧縮特性

Figure5 圧縮試験後のガスケットとフランジ面

(a) アルミ平形ガスケットの漏れ量ーガスケット応力関係

5. 金属ガスケット付き 管フランジ締結体の特性評価

ここまでは理想的に均一な圧縮が可能なプラテンを用いた 評価を行ってきたが、以降は実際の管フランジ締結体での特 性評価を行う。

Figure8は管フランジ締結体試験装置の概略図である。 Figure9はその有限要素解析モデルを示す。寸法は ASME/ANSI class300 2inchとし、ボルトはM16の8本で ある。有限要素解析では対称性を考慮して軸方向に1/2、 周方向に1/16分割し、全体では1/32モデルとしている。ボ ルトのz軸対称面に締付けに相当する圧力を与え、ボルト締 付けを再現している。実験ではボルト締付けはボルトに貼り付 けたひずみゲージによって測定された軸力を指標に行う。連 結したボンベより4MPaのヘリウムを封入し、圧力降下法に よって漏れ量を測定する。

Figure10はアルミニウム平形ガスケットφ65×φ55を対象とし、プラテン装置及び管フランジ締結体に組込んだ場合の漏れ量とガスケット応力の関係を示している。管フランジ締結体

では圧力降下法を用いているために微小な漏れ量が測定出 来ていないが、おおよそプラテン試験の結果と一致している。 ガスケット応力100MPaを負荷した際に著しく漏れ量が小さく なっていることが分かる。この時のガスケット応力及び相当塑 性ひずみを、有限要素解析を用いて計算した結果を Figurel1に示す。Figurel1より、ガスケット応力90MPaで は軽微であった相当塑性ひずみが、100MPaの場合に急激 に大きくなっていることが分かる。一様な圧縮ではない管フラ ンジ締結体においても、ガスケットの相当塑性ひずみが増加 することで、シール性が著しく向上することが分かった。

これまでの研究では、基準漏れ量を 1×10^{-4} Pa·m³/sとした場合に式(1)を用いた初期ボルト軸力の決定方法検討を行っている⁸⁾。

 $F_{\text{fmin}} = b \times \sigma_{\text{yield}} \times \frac{\pi}{4} (d_2^2 - d_1^2) / (N \times 1000)$ (1) ここで、 F_{fmin} :最低限必要な初期ボルト軸力[N]、b:金属 ガスケットの塑性変形発生に関する係数、 d_2 :ガスケット接触 外径 [mm]、 d_1 :ガスケット接触内径 [mm]、N:ボルト数 [本]とする。

基準漏れ量を1×10⁻⁶ Pa·m³/sとした場合の管フランジ締 結体の初期ボルト軸力を検討する。Figure12は上記の ASME/ANSI class300 2inch管フランジ締結体における3 種類の寸法のアルミニウム平形ガスケットと銅平形ガスケット の漏れ量−ボルト軸力関係である。実線は実験データ、 へ、 ○のマークは式1から算出した値を示している。式(1)か ら得られた値はおよそ実験データ挙動の延長にあり、式(1) の妥当性が確認できる。このことより、式(1)を用いることに よって、適切な初期ボルト軸力の検討が可能と考える。

Figure8 管フランジ締結体装置概略図

Figure9 金属ガスケット付き管フランジ締結体の有限要素解析モデル

Figure11 管フランジ締結体でのアルミニウム平形ガスケットの 応力と相当塑性ひずみ分布図

6. おわりに

本研究では実験と有限要素解析によってプラテン及び管 フランジ締結体におけるアルミニウム及び銅の平形ガスケット の漏れ特性評価を行い、以下の結論を得た。

- ガスケットからの漏れをスリーブで回収し、ヘリウムリー クディテクターを用いてプラテン試験における金属平形 ガスケットの1×10⁻⁷ Pa・m³/sレベルの漏れ特性評価を 行った。
- (2) プラテン試験において、金属ガスケットの表面が降伏 し、塑性変形が生じるためシール性が著しく向上した。 更に漏れ量が1×10⁻⁶ Pa·m³/s以下になると、シール 性向上は緩やかになることを明らかにした。この挙動は ガスケット幅が変わっても同様であることも示された。
- (3) ASME/ANSI class300 2inch管フランジ締結体においても、ガスケット接触面の一部が降伏するとシール性が著しく向上することを明らかにした。
- (4) 基準漏れ量1×10⁻⁶ Pa·m³/sとした場合のて締結体の シールに必要なボルト初期締付け軸力の計算法を示 し、実験結果との比較により妥当性があることを確認した。

7. 参考文献

- SAWA, T., HIGURASHI, N., AKAGAWA, H, "Stress Analysis of Pipe Flange Connections", Transactions of the ASME, Journal of Pressure Vessel Technology, Vol.113, No.4, pp.497-503 (1991.11)
- 2)福田忠生,尾崎公一,加治屋純,早川悌二,"内圧を受ける配管フランジ構造部の構造挙動と漏れ特性(金属平形 ガスケットによる検討)",日本機械学会論文集,75巻,756 号,pp51-56 (2009)
- 3)近藤康治,椿翔太,澤俊行,大宮祐也,"内圧作用下における金属平型ガスケット付きフランジ締結体の密封特性", 圧力技術, Vol. 52, No.1, pp. 4-15 (2014)
- 4)近藤康治,椿翔太,澤俊行,大宮祐也,"内圧を受けるリン グジョイントガスケット付き管フランジ締結体の有限要素法 応力解析と密封性能評価",日本機械学会論文集,80巻, 816号, pp.1-13 (2014)
- 5) Kondo, K.,Sawa, T.,Sato, K.,T., Kikuchi,and Tsubaki, S., "The sealing characteristics of bolted flange connection with metal gasket", ASME Pressure Vessels and piping Conference, PVP2012-78413 (2012)
- 6) Kondo, K., Tsubaki, S., Sawa, T., Sato, K., and Omiya, Y., "Sealing performance evaluation in bolted flange connections with ring joint gasket subjected to internal pressure", ASME Pressure Vessels and piping Conference, PVP2013-97173 (2013)
- 7) Kondo, K., Tsubaki, S., Sawa, T., Omiya, Y., and Sato, K., "FEM stress analysis and the sealing performance evaluation of bolted flange connections with metal flat gaskets", ASME Pressure Vessels and piping Conference, PVP2013-97828 (2013)
- 8) Kondo, K., and Sawa, T., "A Determination method of bolt preload for bolted pipe flange connections with metal gaskets under internal pressure", ASME Pressure Vessels and piping Conference, PVP2015-45163 (2015)

佐藤 広嗣 研究開発本部 開発部 近藤 康治 新興プランテック株式会社 澤 俊行 広島大学名誉教授 高橋 聡美 研究開発本部