改良EPDM材料的高温环境特性的评价

1. 前言

之所以会对改良 EPDM 材料(本公司调配№ H3070)的 高温环境特性进行评价,是因为有如下所述的需求。对于 反应堆压力容器(以下称之为"PCV")的密封材料而言,需 要一种即使在200℃的高温蒸汽和数百kGy的高辐射剂量 双重作用的重大事故时(以下称之为"SA时")的环境下, 也能维持密封性能的密封材料。

迄今为止在PCV中使用的密封材料一般都是耐热性出 色的硅橡胶及氟橡胶材料,但在200℃的高温蒸汽、数百 kGy的高辐射剂量双重作用的环境下,出于聚合物结构上 的问题,水解会造成分子量下降,暴露在 γ 线等高能量 下会造成低分子量的加剧,因此可能会出现密封性能丧 失,因此必须要更换其他新材料¹⁾。

而作为新材料提出的,就是以高温蒸汽环境下使用为 预设条件而研发的改良 EPDM 材料。迄今为止,已经进行 了各种各样的评价来确认其密封健全性。在进行确认健 全性的评价时,我们以可在SA时确保对PCV的放射线物 质实现密封为目标,设定了200℃、0.854MPa高温蒸汽 环境这一基本条件,并在此条件下实施了各种试验。实 验结果表明,在上述环境下,该材料具备足够的密封性 能²⁾。

Figure1 所示为根据改良 EPDM 材料的数据及现有密封 材料硅橡胶、氟橡胶的过往评价结果,对特性的图示。横 轴为蒸汽温度、纵轴为辐射剂量。硅橡胶及氟橡胶在SA 时的环境下,难以维持密封功能。与之相对的,改良 EPDM材料即使在200℃以上的高温蒸汽及γ线800kGy以 上的环境下,也能维持其密封功能。

如上所述,证明了改良 EPDM 材料非常适合 SA 时的环 境,将它选作了PCV的新密封材料。有鉴于此,确认改良 EPDM材料的密封功能的极限环境,检验在SA时的环境下 的优势就变得极为重要。因此,我们还决定在远远超过 SA时的环境的高温环境下进行评价。

评价方法如下:实施对检验密封寿命非常有效的压缩

永久变形试验和通过模拟实机法兰的小型法兰实施泄漏 试验,以此来确认密封健全性。

2. 评价

2-1)设定评价温度所需的预备试验

该评价的目的是确认改良 EPDM 材料的密封极限, 故 将材料不会发生具有实际意义的变化的温度设为上限进 行评价。方法为通过热重量分析进行判断。Figure2中,紫 色的曲线为热重量减小率,从超过300℃的温度带开始发 生重量减少,故而可认为到300℃为止,主骨架构造不会 发生大的变化,因此进行了上限300℃的健全性确认。

2-2)评价方法

2-2-1)压缩永久变形试验

使用2种评价方法,对300℃环境下的健全性进行了确 认。其中之一便是采用了在确认密封寿命时非常有效的 压缩永久变形试验。

测定方法依据JISK6262:2013"硫化橡胶及热可塑性橡

华尔卡技术志 Winter 2018

No.34

胶-常温、高温及低温下的压缩永久变形的求法"。试样形 状采用JIS大型试验片(直径 \$\phi 29mm、厚度12.5mm圆柱 状试验片),压缩率设定为25%。

压缩永久变形是将高温环境下、在压缩状态下使用时 产生的塑性变形(并不一定局限于高温环境)加以数值后 的概念。当从压缩状态中释放后,将完全恢复至原状的情 况设为0%,将完全没有任何恢复的设为100%,并将其定 义为最糟的状态。橡胶的老化是因化学反应所致,因此如 Figure3所示,设横轴为时间、纵轴为压缩永久变形率后, 就可预测出到达规定变形为止的时间。

Figure3 压缩永久变形试验及寿命预测图

评价条件如Table1所示。根据SA时的环境,在饱和蒸 汽环境、γ辐射剂量800~1000kGy、温度200~300℃ 的条件下实施评价。但是,假定SA时PCV内环境为上限 0.854MPa,但由于本次是在饱和蒸汽条件的环境下实施 试验的,故施加于试样的压力会特别高(200℃的饱和蒸 汽压1.6MPa、300℃的饱和蒸汽压8.6MPa),因此比SA时 的PCV内环境更为严苛。

Table1 压缩永久变形试验条件

Test	Radiation dose	Environ	Temp	Time
No.	kGy	-	°C	hr
1-1	800	Steam	200	24
1-2	800	Steam	200	72
1-3	800	Steam	200	168
2-1	800	Steam	225	24
2-2	800	Steam	225	72
2-3	800	Steam	225	168
3-1	800	Steam	250	24
3-2	800	Steam	250	72
3-3	800	Steam	250	168
4-1	1000	Steam	265	72
4-2	1000	Steam	265	168
4-3	1000	Steam	265	336
5-1	1000	Steam	280	168
6-1	1000	Steam	300	24
6-2	1000	Steam	300	72
6-3	1000	Steam	300	168

2-2-2)通过小型法兰实施的泄漏试验

第2种评价方法为通过小型法兰实施的泄漏试验。为了 确认能够在SA时的温度、压力下维持密封功能,故采用 了模拟实机法兰的小型法兰。小型法兰简图见Figure4, 小型法兰尺寸见Table2。法兰槽截面形状及截面尺寸与实 际机器相同,此外密封垫片的截面形状及截面尺寸也相同。SA时,因内压作用PCV法兰会发生开口问题。为了模拟这一现象,我们在小型法兰内的平滑部插入了调整隔片以便调整开口量,使用He从小型法兰的内侧加压,可实现在模拟实机环境状态下的泄漏试验。

Figure4 小型法兰简图

	Seal material dimensions		Groove dimensions			6 C	
	Center diameter (gd)	Width (gw)	Height (gh)	Center diameter (fd)	Width (fw)	Height (fh)	Opening amount
Small flange	Shrink actual machine	Same dimension as actual machine	Same dimension as actual machine	Shrink actual machine	Same dimension as actual machine	Same dimension as actual machine	Actual machine opening amount

Table2 小型法兰尺寸

Table3 泄漏试验条件

Test	Radiation dose	Heating				
No.		Exposure environment			Test environment	
		Environ	Temp	Time	Environ	Temp
	kGy		°C	hr		°C
7-1	1000	Steam	280	168	Dry	280
8-1	1000	Steam	300	168	Dry	300

试验条件如Table3所示。在法兰温度到达规定温度后, 使用1MPa的He加压10分钟,以此判断有无泄漏。当此 试验中发生了He泄漏时,可从法兰外径侧确认到泄漏,故 可通过水中置换法收集泄漏的He,以此计算出He的单位 时间的泄漏率。试验装置概要如Figure5所示。

Figure5 小型法兰泄漏试验装置概要

3 . 评价结果

3-1)压缩永久变形试验

压缩永久变形试验的结果如Table4所示。Table4中的 "Cs"表示压缩永久变形率,当温度一定时,压缩永久变形 率会随着时间的增加而增加;当时间一定时,它会随着温 度的上升而增加。

Radiation dose Test Environ Time Temp No. kGy * hr 1-1 800 Steam 200 24 10 1-2 800 Steam 200 72 800 Steam 200 168 16 1-3 2.1 800 Steam 225 24 10 2-2 800 Steam 225 72 15 2-3 800 Steam 225 168 18 3.1 800 Steam 250 24 3-2 800 Steam 250 72 16 3-3 800 Steam 250 168 22 4-1 1000 Steam 265 72 25 4-2 1000 Steam 265 168 34 4-3 1000 Steam 265 336 38 5.1 1000 Steam 280 168 53 6-1 1000 Steam 47 300 24 6-2 1000 Steam 300 72 67 6-3 1000 Steam 300 168 84

Table 4 压缩永久变形试验结果

条件最为严苛的 300℃ 168 小时的试验片(TestNo.6-3) 的外观照片如Figure6 所示。虽未在侧面确认到异常,但 密封面的中央附近却发现了凹陷,故将该试样切开,对截 面进行了检查确认。凹陷的原因是因内部发生的龟裂所 致,但为贯穿到密封面。而发生龟裂的原因可能是因高压 饱和蒸汽减压时,压缩蒸汽的突然急剧的膨胀所致。具体 原因是,由于是在 300℃饱和蒸汽环境下进行的评价,因 此承受了 8.6MPa的蒸汽压,而进入橡胶之中的蒸汽也出 No.34

于被压缩的状态之下,当评价结束时从压力容器中释放 高压蒸汽时,便发生了急剧性的减压,受此影响,橡胶中 被压缩的蒸汽发生急剧碰撞,这最终导致了橡胶发生龟 裂。

但是,本次的龟裂是因评价设备的物理原因所致,而 SA时的压力上限值为0.854MPa,故在实际SA时,应该不 会发生龟裂。

Figure7对压缩永久变形的结果进行了图表化。横轴为时间、纵轴为压缩永久变形率,绘制所得的数据后,就可得到各种温度下的近似曲线。如Figure7所示,它们都具

有极高的相关系数,且近似曲线的倾斜也相当类似。此 外,Figure8是针对各温度,按一般可以确保密封功能的 80%的压缩永久变形率³⁾的时间进行整理的结果(阿里纽 斯作图法),这里也具有极高的相关系数且可能近似直 线。

热老化是由化学反应所引起,故老化程度会随投入的 热能量而加剧。但处于并没有大幅超过材料极限的温度 带时,且评价环境较为稳定时,应会显示比较规则的老化 特性。

因为,本次的200℃~300℃饱和蒸汽环境下,其老化 与化学反应论相符,并非突发性的异常老化,故为可预测 寿命的老化。

3-2) 通过小型法兰实施的泄漏试验

通过小型法兰实施的泄漏试验的结果为:在280℃及 300℃的温度下、暴露于饱和蒸汽环境下168小时后,未 从试样上发现泄漏问题。

评价结束后,对小型法兰进行了拆解,并确认检查了密 封垫片的外观。Figure9所示为在280℃温度下暴露168小 时后的试样照片,未见外观异常。同样,在300℃的温度 下,暴露168小时后的试样上,虽在周向上确认到部分龟 裂,但也未见可对泄漏造成影响的内外径方向上的龟裂 或破损。上述龟裂与压缩永久变形试验的内部龟裂相同, 应该是因突然急剧性的减压所引起的压缩蒸汽的急剧膨 胀所致。

因此,在280℃、300℃的饱和蒸汽环境下,在168小时这个阶段,并无具有实际意义的密封材料的破损等问题,故认定可以维持密封功能。

Figure9 Test № 7-1 泄漏试验后试样照片

4. 总结

下面根据高温饱和蒸汽环境下的压缩永久变形试验及 通过小型法兰实施的泄漏试验,对结果进行总结。

- •改良 EPDM材料(本公司调配 № H3070)在200°~ 300°C时的老化特性为同一原理,因温度变化而发生 突发性异常老化的可能性较低。
- •根据通过小型法兰实施的泄漏试验的结果,在300℃ 饱和蒸汽168小时的条件下,未见泄漏。

•根据上述内容,可确定其在约300℃以内的饱和蒸汽 环境下,是可以稳定使用的密封材料。

5. 结语

根据本评价,若限定在该环境下,则EPDM材料是即便 在300℃这一极为严苛的环境下,也能维持密封功能的材 料。通过此次研究,我们又一次深切地感受到了不被先人 为主的观点和一般常识所影响的自由的开发、验证,以及 倾听用户的声音是多么重要的一件事。今后,我们将继续 努力进取,绝不满足于现状,以便能够提出更多这样的报 告。

此外,本次报告对在2017年日本原子能学会 秋季大会 上发表的内容作了部分编辑。

在本报刊载之际,借此机会对给予我们许多帮助的中 部电力株式会社的各位表示衷心的感谢。

6. 参考文献

- 1)伊藤 浩史",真空弹性体的抗辐射性调查"第27届线 性加速器技术研究会,7P-19
- 2)铃木 宪:华尔卡技术志, No.30, 14-19(2016)
- 3)川村 敏夫", O 形圈的寿命和可靠性", 华尔卡评论 Vol26, 1982

No.34

华尔卡技术志 Winter 2018

铃木 宪 研究开发本部 第1商品开发部

松田 真一 中部电力株式会社 杉村 卓哉 中部电力株式会社